Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 2086-2106, 2023.
Article in English | WPRIM | ID: wpr-982827

ABSTRACT

As confusion mounts over RNA isoforms involved in phenotypic plasticity, aberrant CpG methylation-mediated disruption of alternative splicing is increasingly recognized as a driver of intratumor heterogeneity (ITH). Protease serine 3 (PRSS3), possessing four splice variants (PRSS3-SVs; PRSS3-V1-V4), is an indispensable trypsin that shows paradoxical effects on cancer development. Here, we found that PRSS3 transcripts and their isoforms were divergently expressed in lung cancer, exhibiting opposing functions and clinical outcomes, namely, oncogenic PRSS3-V1 and PRSS3-V2 versus tumor-suppressive PRSS3-V3, by targeting different downstream genes. We identified an intragenic CpG island (iCpGI) in PRSS3. Hypermethylation of iCpGI was mediated by UHRF1/DNMT1 complex interference with the binding of myeloid zinc finger 1 (MZF1) to regulate PRSS3 transcription. The garlic-derived compound diallyl trisulfide cooperated with 5-aza-2'-deoxycytidine to exert antitumor effects in lung adenocarcinoma cells through site-specific iCpGI demethylation specifically allowing MZF1 to upregulate PRSS3-V3 expression. Epigenetic silencing of PRSS3-V3 via iCpGI methylation (iCpGIm) in BALF and tumor tissues was associated with early clinical progression in patients with lung cancer but not in those with squamous cell carcinoma or inflammatory disease. Thus, UHRF1/DNMT1-MZF1 axis-modulated site-specific iCpGIm regulates divergent expression of PRSS3-SVs, conferring nongenetic functional ITH, with implications for early detection of lung cancer and targeted therapies.

2.
Journal of Korean Medical Science ; : 1068-1089, 2008.
Article in English | WPRIM | ID: wpr-36259

ABSTRACT

Transitional-CpG methylation between unmethylated promoters and nearby methylated retroelements plays a role in the establishment of tissue-specific transcription. This study examined whether chromosomal losses reducing the active genes in cancers can change transitional-CpG methylation and the transcription activity in a cancer-type-dependent manner. The transitional-CpG sites at the CpG-island margins of nine genes and the non-island-CpG sites round the transcription start sites of six genes lacking CpG islands were examined by methylation-specific polymerase chain reaction (PCR) analysis. The number of active genes in normal and cancerous tissues of the stomach, colon, breast, and nasopharynx were analyzed using the public data in silico. The CpG-island margins and non-island CpG sites tended to be hypermethylated and hypomethylated in all cancer types, respectively. The CpG-island margins were hypermethylated and a low number of genes were active in the normal stomach compared with other normal tissues. In gastric cancers, the CpG-island margins and non-island-CpG sites were hypomethylated in association with high-level chromosomal losses, and the number of active genes increased. Colon, breast, and nasopharyngeal cancers showed no significant association between the chromosomal losses and methylation changes. These findings suggest that chromosomal losses in gastric cancers are associated with the hypomethylation of the gene-control regions and the increased number of active genes.


Subject(s)
Humans , Alu Elements/genetics , Chromosome Deletion , CpG Islands/genetics , DNA Methylation , DNA, Neoplasm/chemistry , Gene Expression Profiling , Genes, Neoplasm , Long Interspersed Nucleotide Elements/genetics , Polymerase Chain Reaction , Promoter Regions, Genetic , Stomach Neoplasms/genetics
3.
Journal of Korean Medical Science ; : 790-805, 2005.
Article in English | WPRIM | ID: wpr-176546

ABSTRACT

The extent of unilateral chromosomal losses and the presence of microsatellite instability (MSI) have been classified into high-risk (high- and baseline-level loss) and low-risk (low-level loss and MSI) stem-line genotypes in gastric carcinomas. A unilateral genome-dosage reduction might stimulate compensation mechanism, which maintains the genomic dosage via CpG hypomethylation. A total of 120 tumor sites from 40 gastric carcinomas were examined by chromosomal loss analysis using 40 microsatellite markers on 8 chromosomes and methylation analysis in the 13 CpG (island/non-island) regions near the 10 genes using the bisulfite-modified DNAs. The high-level-loss tumor (four or more losses) showed a tendency toward unmethylation in the Maspin, CAGE, MAGE-A2 and RABGEF1 genes, and the other microsatellite-genotype (three or fewer losses and MSI) toward methylation in the p16, hMLH1, RASSF1A, and Cyclin D2 genes (p<0.05). The non-island CpGs of the p16 and hMLH1 genes were hypomethylated in the high-level-loss and hypermethylated in the non-high-level-loss sites (p<0.05). Consequently, hypomethylation changes were related to a high-level loss, whereas the hypermethylation changes were accompanied by a baseline-level loss, a low-level loss, or a MSI. This indicates that hypomethylation compensates the chromosomal losses in the process of tumor progression.


Subject(s)
Humans , Chromosome Aberrations/statistics & numerical data , Chromosome Mapping/methods , CpG Islands/genetics , DNA Methylation , DNA Mutational Analysis/methods , France/epidemiology , Genetic Predisposition to Disease/epidemiology , Genetic Testing/methods , Genomic Instability/genetics , Incidence , Korea/epidemiology , Microsatellite Repeats/genetics , Polymorphism, Genetic , Risk Assessment/methods , Risk Factors , Statistics , Stomach Neoplasms/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL